Navigating molecular worms inside chemical labyrinths.

نویسندگان

  • M Haranczyk
  • J A Sethian
چکیده

Predicting whether a molecule can traverse chemical labyrinths of channels, tunnels, and buried cavities usually requires performing computationally intensive molecular dynamics simulations. Often one wants to screen molecules to identify ones that can pass through a given chemical labyrinth or screen chemical labyrinths to identify those that allow a given molecule to pass. Because it is impractical to test each molecule/labyrinth pair using computationally expensive methods, faster, approximate methods are used to prune possibilities, "triaging" the ability of a proposed molecule to pass through the given chemical labyrinth. Most pruning methods estimate chemical accessibility solely on geometry, treating atoms or groups of atoms as hard spheres with appropriate radii. Here, we explore geometric configurations for a moving "molecular worm," which replaces spherical probes and is assembled from solid blocks connected by flexible links. The key is to extend the fast marching method, which is an ordered upwind one-pass Dijkstra-like method to compute optimal paths by efficiently solving an associated Eikonal equation for the cost function. First, we build a suitable cost function associated with each possible configuration, and second, we construct an algorithm that works in ensuing high-dimensional configuration space: at least seven dimensions are required to account for translational, rotational, and internal degrees of freedom. We demonstrate the algorithm to study shortest paths, compute accessible volume, and derive information on topology of the accessible part of a chemical labyrinth. As a model example, we consider an alkane molecule in a porous material, which is relevant to designing catalysts for oil processing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Modeling of Viscous Fluid Flow by Sealing Labyrinths

This paper analyzes laminar viscous fluid flow through interstices in order to properly design the labyrinth seals and improve the volumetric efficiency of the turbomachines. The theoretical study and hydrodynamic modeling of the threedimensional flow inside the labyrinth was made using a CFD application ANSYS Fluent, on different labyrinth geometries. There were determined: the flow spectrum, ...

متن کامل

Escaping from a Labyrinth with One-way Roads for Limited Robots

In this paper, we consider the problem of navigating a robot with limited abilities concerning computing power, memory, and sensors through a labyrinth with one-way roads. Escaping from a labyrinth is a task which is widely explored. Many algorithms with different advantages and different areas of application are known. Usually, labyrinths are given as polygonal scenes or (directed) graphs. Whi...

متن کامل

Immunization of dog with proteins under 30 kDa molecular weight of hydatid cyst fluid and protoscoleces of Echinococcus granulosus

The aim of the present study was to assess the immunogenicity of under 30kDa molecular weight proteins of hydatid cyst fluid and protoscoleces in dogs experimentaly Infected with Echinococcus granulosus. Isolation of under 30 kDa proteins performed using Millipore filter. Six dogs were used in three groups: 2 dogs with under 30 kDa proteins of hydatid cyst fluid (Group I); 2 dogs with proteins ...

متن کامل

In vivo intravascular biotinylation of Schistosoma bovis adult worms and proteomic analysis of tegumental surface proteins.

UNLABELLED Schistosoma bovis is a blood-dwelling fluke of ruminants that lives for years inside the vasculature of their hosts. The parasite tegument covers the surface of the worms and plays a key role in the host-parasite relationship. The parasite molecules expressed at the tegument surface are potential targets for immune or drug intervention. The purpose of this work was the identification...

متن کامل

Molecular Dynamics Simulation of Water in Single WallCarbon Nanotube

The overall aim of this study is to calculate some water properties in the single wall carbon naotubes (SWCNT) and compare them to the bulk water properties to investigate the deviation of water properties inside the SWCNT from those in the bulk. Here some physical and transport properties of water molecules in the single wall carbon nanotube were reported by performing molecular dynamics (MD) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 51  شماره 

صفحات  -

تاریخ انتشار 2009